ON MINIMAL COLLECTIONS OF INDEXES

Egor A. Timoshenko

We denote $s = \left[\frac{n}{2}\right]$, $l = \left[\frac{n+1}{2}\right]$, $M_n = C_n^s = C_n^l$; indexes built for the case of n columns (i.e., ordered subsets of the set $\{1, 2, ..., n\}$) will be called *n-indexes*.

The length of an index a is designated by ||a||. If $0 \le i \le ||a||$, then $S_i(a)$ will denote the set consisting of the first i elements of the index a. Any set that has exactly i elements is said to be an *i-element set*. The cardinality of a set A will be designated by |A|.

Our aim is to build a collection of *n*-indexes U such that for any subset $A \subseteq \{1, 2, ..., n\}$ there exists an index $a \in U$ satisfying the condition $S_{|A|}(a) = A$. For any $i \in \{0, 1, 2, ..., n\}$ every i-element subset of $\{1, 2, ..., n\}$ must agree with the beginning of at least one index, so the number of the indexes cannot be less than C_n^i , which is the number of different *i*-element subsets. In particular, if we consider the s-element subsets of $\{1, 2, ..., n\}$, we obtain that the number of the indexes is at least $M_n = C_n^s$.

At least C_n^{s+1} of these M_n (or more) indexes of length s should be extended by one element. After that at least C_n^{s+2} of the extended indexes should be extended by one more element, etc. Finally, one $(C_n^n = 1)$ of the indexes already having length n-1 should be extended by one more element. We obtain that the total length of the indexes cannot be less than $L_n = sC_n^s + C_n^{s+1} + C_n^{s+2} + \ldots + C_n^n$

Recall that for any $i \in \{1, 2, \dots, n\}$ the formula $C_{n+1}^i = C_n^{i-1} + C_n^i$ is valid. Next, for $i\in\{0,1,2,\dots,n\}$ we have $C_n^i=C_n^{n-i}.$ Note also that $\sum\limits_{i=0}^nC_n^i=2^n.$ Then we obtain: a) if n=2s+1, then $L_n=sC_n^s+\frac{1}{2}\cdot 2^n=sM_n+2^{n-1};$

- b) if n=2s, then $L_n=sC_n^s+\frac{1}{2}(2^n-C_n^s)=\left(s-\frac{1}{2}\right)C_n^s+2^{n-1}=\left(s-\frac{1}{2}\right)M_n+2^{n-1}$. In both cases we have the equality $L_n = \frac{(n-1)M_n}{2} + 2^{n-1}$.

A collection U of n-indexes is said to be minimal if:

- 1) the collection satisfies the conditions of the original problem, i.e., for any subset $A \subseteq \{1, 2, \dots, n\}$ there exists an index $a \in U$ such that $S_{|A|}(a) = A$;
 - 2) the collection has exactly M_n indexes;
 - 3) the total length of the indexes of the collection is L_n .

The above argument shows that a minimal collection of n-indexes (if such a collection exists) satisfies the following:

- I. Every index of the collection has length at least l (for an odd number n this follows from the equality $C_n^s = C_n^l$).
- II. The collection has exactly C_n^{l+1} indexes whose length is at least l+1; exactly C_n^{l+2} indexes whose length is at least l+2; ...; C_n^{n-1} indexes whose length is at least n-1, and one $(C_n^n=1)$ index whose length is n.

An *n*-index *a* of a minimal collection is called *long* if $||a|| \ge l + 1$ (the total number of such indexes is $D_n = C_n^{l+1}$). All other indexes of the collection will be called *short*, their total number being $K_n = M_n - D_n$.

A minimal collection U of n-indexes is said to be good if it has the property

$$\text{for any natural number } i\leqslant n \text{ and any } i\text{-element set } A\subseteq\{1,2,\dots,n\}$$
 there exists an index $a\in U$ such that $S_i(a)=A$ and $\|a\|\geqslant n-i.$

Note that it suffices to check this condition for all $i < \frac{n}{2}$ (if $i \ge \frac{n}{2}$, then it is immediate that $||a|| \ge i$ and so $||a|| + i \ge n$). It is also clear that the condition (*) holds for i = 0.

Let a be some n-index (we assume $||a|| \ge \frac{n}{2}$). Denote by $F_{n+1}(a)$ the (n+1)-index which is obtained by inserting the element n+1 into the index a (the element must be inserted so that it becomes the m-th element of the index $F_{n+1}(a)$, where $m = n+1-||a|| \le ||a||+1$).

Theorem. For any natural number n there exists a good collection of n-indexes.

Proof. The basis (for n = 1) is obvious.

The inductive step will be divided into two cases.

- a) Suppose that we already have a good collection of (2k-1)-indexes, say, U. Define the collection V of 2k-indexes by the formula $V=U\cup V'$, where $V'=\{F_{2k}(a)\mid a\in U\}$. Now we check that the collection V is minimal.
- 1) Let $A \subseteq \{1, 2, ..., 2k\}$ and $B = A \setminus \{2k\}$, where |B| = i. By the inductive assumption there exists a (2k-1)-index $a \in U \subset V$ with the properties $S_i(a) = B$ and $||a|| \geqslant 2k-1-i$. If $2k \notin A$, then $S_i(a) = A$. Now suppose that $2k \in A$. Then the 2k-index $b = F_{2k}(a) \in V$ has the element 2k in the m-th place, where $m = 2k ||a|| \leqslant i + 1$. Hence $S_{i+1}(b) = A$. So the collection V satisfies the conditions of the original problem.
 - 2) The number of the indexes in the collection V is

$$|V| = |U| + |V'| = 2M_{2k-1} = 2C_{2k-1}^{k-1} = C_{2k-1}^{k-1} + C_{2k-1}^k = C_{2k}^k = M_{2k}.$$

3) The total length of the indexes of the collection U is L_{2k-1} , hence the total length of the indexes of the collection V' equals $L_{2k-1} + |V'| = L_{2k-1} + M_{2k-1}$. Then for the total length of the indexes of the collection V we obtain the expression

$$\begin{split} 2L_{2k-1} + M_{2k-1} &= 2\left(\frac{(2k-2)M_{2k-1}}{2} + 2^{2k-2}\right) + M_{2k-1} = \\ &= (2k-2)M_{2k-1} + 2^{2k-1} + M_{2k-1} = \\ &= (2k-1)M_{2k-1} + 2^{2k-1} = \frac{(2k-1)M_{2k}}{2} + 2^{2k-1} = L_{2k}, \end{split}$$

as desired. Thus the collection V is really minimal.

We show that the collection V is good. Let us choose $i \in \{1, 2, ..., k-1\}$ and some i-element set $A \subseteq \{1, 2, ..., 2k\}$. Consider two cases.

- Let $2k \in A$; denote $B = A \setminus \{2k\}$, then |B| = i 1. By the inductive assumption there exists a (2k-1)-index $a \in U$ such that $S_{i-1}(a) = B$ and $||a|| \geqslant 2k i$. Then the 2k-index $b = F_{2k}(a) \in V$ is obtained from a by inserting the element 2k into the m-th place, where $m = 2k ||a|| \leqslant i$. It means that $||b|| \geqslant 2k i$ and $S_i(b) = A$, i.e., the index b guarantees the validity of the condition (*) for the collection V.
- Let $2k \notin A$. Then by the inductive assumption there exists a (2k-1)-index $a \in U$ with $S_i(a) = A$ and $||a|| \ge 2k-1-i$. If $||a|| \ge 2k-i$, then the 2k-index $a \in V$ guarantees the validity of the condition (*) for the collection V. And if ||a|| = 2k-1-i, then the 2k-index $b = F_{2k}(a) \in V$ differs from a only by the element 2k inserted into the (i+1)-th place. Hence ||b|| = 2k-i and $S_i(b) = A$. Thus the collection V satisfies the condition (*).
- b) Suppose that we already have a good collection of 2k-indexes, say, U. Define the collection V of (2k+1)-indexes by the formula $V=V'\cup V''$, where V' is the set of all long indexes of the collection U and $V''=\{F_{2k+1}(a)\mid a\in U\}$. Let us check that V is minimal.
- 1) Let $A\subseteq\{1,2,\dots,2k+1\}$ and $B=A\setminus\{2k+1\}$, where |B|=i. By the inductive assumption there exists a 2k-index $a\in U$ with $S_i(a)=B$ and $\|a\|\geqslant 2k-i$. If $2k+1\notin A$ and $\|a\|\geqslant k+1$, then $a\in V'\subset V$ and $S_i(a)=A$. If $2k+1\notin A$ and $\|a\|=k$, then the (2k+1)-index $b=F_{2k+1}(a)\in V$ differs from a only by the element 2k+1 added to the end, so $S_i(b)=A$.

Now suppose $2k+1 \in A$. Then the (2k+1)-index $b=F_{2k+1}(a) \in V$ has the element 2k+1 in the m-th place, where $m=2k+1-\|a\| \leqslant i+1$. Hence $S_{i+1}(b)=A$. Thus V satisfies the conditions of the original problem.

2) The number of the indexes in the collection V is

$$|V| = |V'| + |V''| = D_{2k} + M_{2k} = C_{2k}^{k+1} + C_{2k}^{k} = C_{2k+1}^{k+1} = M_{2k+1}.$$

3) The total length of the indexes of the collection U is L_{2k} , so the total length of the indexes of the collection V'' is $L_{2k} + |V''| = L_{2k} + M_{2k}$. The total length of all short indexes of the collection U equals $k \cdot K_{2k}$, and the total length of all long indexes equals $L_{2k} - k \cdot K_{2k}$. Then for the total length of the indexes of the collection V we obtain the expression

$$\begin{split} 2L_{2k} + M_{2k} - k \cdot K_{2k} &= 2\left(\frac{(2k-1)M_{2k}}{2} + 2^{2k-1}\right) + M_{2k} - k(M_{2k} - D_{2k}) = \\ &= (2k-1)M_{2k} + 2^{2k} + M_{2k} - kM_{2k} + kD_{2k} = kM_{2k} + 2^{2k} + kD_{2k} = \\ &= kC_{2k}^k + 2^{2k} + kC_{2k}^{k+1} = kC_{2k+1}^{k+1} + 2^{2k} = kM_{2k+1} + 2^{2k} = L_{2k+1}. \end{split}$$

Hence the collection V is minimal.

We show that the collection V is good. Choose $i \in \{1, 2, ..., k\}$ and some i-element set $A \subseteq \{1, 2, ..., 2k + 1\}$. Consider two cases.

- Let $2k+1 \in A$; we designate $B=A \setminus \{2k+1\}$, then |B|=i-1. By the inductive assumption there exists a 2k-index $a \in U$ such that $S_{i-1}(a)=B$ and $||a||\geqslant 2k+1-i$. Then the (2k+1)-index $b=F_{2k+1}(a)\in V$ is obtained from a by inserting the element 2k+1 into the m-th place, where $m=2k+1-||a||\leqslant i$. It means that $||b||\geqslant 2k+1-i$ and $S_i(b)=A$, i.e., the index b guarantees the validity of the condition (*) for the collection V.
- Let $2k+1 \notin A$. Then by the inductive assumption there exists a 2k-index $a \in U$ with $S_i(a) = A$ and $||a|| \geqslant 2k-i$. If $||a|| \geqslant 2k+1-i$, then the 2k-index a is long, i.e., the (2k+1)-index $a \in V' \subset V$ guarantees the validity of the condition (*) for the collection V. And if ||a|| = 2k-i, then the (2k+1)-index $b = F_{2k+1}(a) \in V$ differs from a only by the element 2k+1 inserted into the (i+1)-th place. Hence ||b|| = 2k+1-i and $S_i(b) = A$. Thus the collection V satisfies (*).

Good collections of n-indexes for small n

For n = 1:

(1)

For n=2:

(2,1)

(1)

For n = 3:

(3, 2, 1)

(1,3)

(2,1)

For n = 4:

(4, 3, 2, 1)

(1, 4, 3)

(2,4,1)

(3, 2, 1)

(1, 3)

(2,1)

For n = 5:

(5,4,3,2,1)

(1, 5, 4, 3)

(2, 5, 4, 1)

(3, 5, 2, 1)

(4, 3, 2, 1)

(1, 3, 5)

(2, 1, 5)

(1, 4, 3)

(2, 4, 1)

(-, -, -)

(3, 2, 1)

For n = 6:

(6,5,4,3,2,1)

(1,6,5,4,3)

(2,6,5,4,1)

(3, 6, 5, 2, 1)

(4,6,3,2,1)

(5,4,3,2,1)

(1, 3, 6, 5)

(2, 1, 6, 5)

(1,4,6,3)

(2,4,6,1)

(3, 2, 6, 1)

(1, 5, 4, 3)

(2, 5, 4, 1)

(3, 5, 2, 1)

(4, 3, 2, 1)

(1, 3, 5)

(2, 1, 5)

(1, 4, 3)

(2, 4, 1)

(3, 2, 1)